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Abstract: A method called “Emerging Chemical Patterns” (ECP) has recently been introduced as a novel approach to bi-

nary molecular classification (for example, “active” versus “inactive”). The underlying pattern recognition algorithm was 

first introduced in computer science and then adopted for applications in medicinal chemistry and compound screening. A 

special feature is its ability to accurately classify molecules on the basis of very small training sets containing only a few 

compounds. This feature is highly relevant for virtual compound screening when only very few experimental hits are 

available as templates. Here we adopt ECP calculations to simulate sequential screening using an experimental high-

throughput screening (HTS) data set containing inhibitors of dihydrofolate reductase. In doing so, we focus on minimizing 

the number of database compounds that need to be evaluated in order to identify a substantial fraction of available hits. 

We demonstrate that iterative ECP calculations recover on average between ~19% and ~39% of available hits in the data 

set while dramatically reducing the number of compounds that need to be tested to between ~0.002% and ~9% of the 

screening database.  

Key Words: Pattern recognition, data mining, descriptors, molecular similarity, molecular classification, structure-activity rela-
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1. INTRODUCTION 

 Machine learning methods have become widely used 
tools for compound classification. Accordingly, a number of 
different machine learning algorithms have been introduced 
for chemical database mining [1-6]. Often, but not always, 
such methods are used for “binary” or so-called “class label” 
predictions, for example, “active“ versus “inactive”. Irre-
spective of algorithmic details, machine learning depends on 
the availability of compound sets for training and their per-
formance is often much influenced by the composition of 
training sets. In addition, there are other issues that are often 
critical for the successful application of machine learning 
techniques. For example, predictive models are usually diffi-
cult to generate when only a limited number of molecules are 
available for training and their performance can be greatly 
affected by data heterogeneity or data sets with a substantial 
unbalance of class labels. Only a few methods, for example, 
Bayesian models, have been developed to handle noisy data 
[6].  

 We aimed at developing a methodology to build classifi-
cation models on the basis of very limited training data even 
in the presence of data noise that is typically found in ex-
perimental screening sets. In general, only small numbers of 
active compounds are available during the early stages of 
HTS campaigns or hit-to-lead and lead optimization pro-
grams. Therefore, we have studied and adopted a concept 
from computer science called “emerging patterns” [7]. Our 
ECP approach systematically explores molecular feature  
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patterns and selects patterns that occur with high frequency 
in one class of compounds (e.g., the “active” class), but not 
in another (e.g., the “inactive” class) [8]. Molecular features 
are generated through calculations of large numbers of mo-
lecular structure and property descriptors [9]. Such discrimi-
nating patterns are then used for class label predictions. In 
our initial study, we could demonstrate that ECP calculations 
could distinguish with high accuracy between active com-
pounds at different potency levels, i.e. micromolar versus 
nanomolar potency [8]. These calculations on different activ-
ity classes succeeded on the basis of learning sets consisting 
of only three to 10 highly potent and weakly potent com-
pounds belonging to the same class. Here we further extend 
our analysis and investigate whether ECP analysis is capable 
of supporting iterative biological screening campaigns where 
often only a few hits are available initially and where screen-
ing data are noisy.  

 Virtual screening (VS) and HTS are complementary in 
nature [10,11]. The complementarity of computational and 
experimental screening is best exploited when implementing 
so-called “iterative” or “sequential” screening schemes [11, 
12]. In sequential screening, VS methods such as cluster 
analysis or similarity searching are applied to pre-select 
small subsets from large compound libraries for experimen-
tal evaluation. As VS templates, already known experimental 
hits are used or, alternatively, sets of known active com-
pounds from patents or the literature. The underlying idea is 
to enrich small database subsets with novel hits and establish 
an iterative computational and experimental screening proto-
col. The subsets are experimentally screened and newly iden-
tified hits are taken into account as additional information 
during subsequent rounds until a sufficiently large number of 
novel hits are obtained [10]. Combining VS and HTS in se-
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quential screening can dramatically reduce the number of 
compounds that need to be tested. For example, comparing 
the results of several sequential screening campaigns sug-
gests that at least 50% of hits available in screening libraries 
can be identified by experimental testing of only 10%-20% 
of all database compounds [12]. 

 In this study, we have simulated sequential screening 
trials using our ECP methodology and an experimental HTS 
data set in order to investigate whether it would indeed be 
possible to achieve meaningful predictions and enrichments 
of active compounds when only a few experimental hits are 
used as VS templates. From a computational point of view, 
this presents a challenging scenario consistent with tasks for 
which ECP was developed. In addition, this situation is mir-
roring early stages of HTS campaigns and is therefore of 
practical relevance.  

2. METHODOLOGY 

 The computer scientific foundations of ECP are fairly 
complex. However, in the following section we will describe 
the methodology in an intuitive manner. The classification 
technique utilizes combinations of discrete molecular descrip-

tors. In general terms, molecular descriptors represent fea-
tures relating to molecular structure and properties, mathe-
matically often of greatly varying complexity [9]. Relatively 
simple examples include molecular mass, the numbers of 
hydrogen bond donors and aromatic atoms in a molecule, or 
solvent accessible molecular surface area. The majority of 
descriptors is numerical in nature and adopts continuous or 
discrete value ranges. Currently, more than 5,000 different 
descriptors have been catalogued [9] but no single descriptor 
captures enough chemical information to, for example, clas-
sify compounds according to biological activity. Thus, com-
binations of varying numbers of molecular descriptors are 
typically employed for compound classification. The ECP 
algorithm automatically identifies such combinations from 
different sample sets of molecules to generate classifiers for 
class-label prediction. 

2.1. Data Mining in Descriptor Spaces 

 In a pictorial view, descriptors constitute a multi-
dimensional space where each molecule is associated with a 
vector depending on its descriptor values. Fig. (1) shows a 
simple space built from two descriptors, D1 and D2. Twenty 

Fig. (1).  Descriptor space.  For demonstration purposes, a simple chemical space is shown that is formed by only two descriptors, D1 and 

D2. Descriptor value ranges are divided into intervals. A total of 20 compounds belonging to two different classes (light and dark gray, re-

spectively) are projected into this space. In Figs. (1-3), compound structures are only used for illustrative purposes and their specific identi-

ties are not relevant for further discussion. 
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molecules belonging to two classes are projected into this 
space. A region of space where compounds from one of the 
classes dominate is outlined by combinations of descriptor 
values typical for this class. The discriminatory power of 
such combinations can be related to the “purity” of the sub-
region: the more one class of compounds dominates, the 
more typical a combination of features becomes for the 
dominating class. The sharpest distinction can be made if 
one class is completely absent in a sub-space, e.g. in the sub-
space defined by the intervals [3,4] from descriptor D1 and 
[a,b] from descriptor D2. In the following, such combinations 
will be written as {D1:[3,4], D2:[a,b]}. This region contains 
five compounds from one class, which is nearly half of the 
population of this class, but no compounds from the other 
class. Thus, in order to be as discriminatory as possible, one 
searches for regions in descriptor space that cover as many 
compounds as possible from one class, but the least number 
of compounds from the other class (or classes). However, in 
high-dimensional spaces with multi-valued descriptors, the 
number of descriptor value combinations grows exponen-
tially. Therefore, we need data mining algorithms that are 
capable of extracting most discriminatory descriptor combi-
nations from high-dimensional space representations. 

2.2. Emerging Patterns 

 For the following descriptions, we consider molecules 

organized in a table with all descriptors, one per column. A 

molecule can then be associated with descriptor value com-

binations D1 :V1,…,Dn :Vn{ } . An arbitrary set of descriptor 

value pairs is called a “pattern” and the number of com-

pounds sharing a pattern p is defined as the “support” 

sup(p)  of a pattern p. For two classes, the fraction of their 

supports of a pattern p in each class is called its “growth 

rate” growth (p). Using this terminology, we can now for-

mally describe discriminatory regions in descriptor space as 

patterns having high support in one class and low support in 

the other, which corresponds to patterns having a high 

growth rate. In data mining, such patterns are called “emerg-

ing patterns” [7]. In order to reduce the number of emerging 

patterns to be considered, we focus on a sub-set of emerging 

patterns where the support in one class is zero. These pat-

terns are called “jumping emerging patterns” (JEP) and have 

highest discriminatory power [13]. 

 As already mentioned, the number of possible patterns 

can become exceedingly large for high-dimensional spaces 

formed by descriptors with continuous value ranges. A pos-

sibility to reduce the number of patterns is to concentrate on 

patterns that are most general, i.e. patterns representing a 

large number of compounds. Following our terminology, 

these would be emerging patterns having highest support, as 

illustrated in (Fig. 2). Both patterns D1 :[2, 3],D2 :[a,b]{ }
and D1 :[3, 4],D2 :[a,b]{ }  are emerging patterns capturing 

one and five compounds from one of the two classes, respec-

tively. However, seven of eight compounds are also captured 

by the smaller pattern D2 :[a,b]{ } , which has higher support 

than both individual patterns and is thus more general and 

preferred. In order to further reduce the number of emerging 

patterns, we select only patterns containing a minimal num-

ber of items. In (Fig. 2), we can find two JEP capturing  

the single compound in the lower left: D1 :[4,5]{ }  and 

D1 :[4,5],D2 :[b,c]{ } . Since both patterns have the same 

support of 1/3, we cannot use support here as a measure of 

generality. However, the second pattern contains more items 

and places more constraints on matching compounds, mak-

ing it more special and less general than the first one. In 

other words, every compound that fits the second pattern 

also fits the first one, which therefore represents a more gen-

eral pattern. Considering such differences in generality, we 

can further reduce the number of JEP for analysis by select-

Fig. (2). Illustration of most expressive jumping emerging patterns.  Shown are a total of 11 compounds from two classes distributed in 

a chemical space formed by two descriptors D1 and D2. Patterns are described in the text. 
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ing JEP for which (1) no superset pattern with more descrip-

tor value pairs has higher support and (2) no subset is also a 

JEP. Patterns meeting those two criteria are called “most-

expressive JEP” [13]. For the analysis of molecular patterns, 

we have defined ECPs as the most expressive JEP from de-

scriptor-dependent feature analysis [8]. Such patterns can be 

mined in molecular datasets using different types of methods 

including a hypergraph-based algorithm used in our imple-

mentation [14]. 

2.3. Discretization of Descriptor Values 

 The generation of ECPs and other emerging patterns re-

quires the availability of finite and discrete descriptor values 

and intervals. Most descriptors can adopt many different 

values or continuous value ranges and, therefore, they must 

be subjected to discretization procedures to divide their value 

ranges into suitable intervals. Methods of rather different 

complexity are available to transform multi-valued or con-

tinuous descriptors into discrete domains that take training 

set distributions into account [8]. The same discretization 

procedure must be applied to training and test compounds. 

For the studies reported herein, we introduce a straightfor-

ward discretization approach based on statistical properties 

of the training set compounds. For a training set with two 

classes, we compute the mean  and standard deviation  of 

a descriptor in each class and use the three ranges 

, +( ] , ,( ]  and + ,+( )  as discrete in-

tervals. We eliminate descriptors which show no variation or 

for which the coefficient of variation c = > 1 . Descriptors 

with no variance do not have any generalization ability and 

are thus not useful for classification. The removal of descrip-

tors with large variation is rationalized by the fact that de-

scriptor value distributions are class-selective with the ma-

jority of descriptor values found in small class-specific value 

ranges [15]. These value ranges are particularly attractive for 

the generation of patterns. On the other hand, descriptors 

having a coefficient of variation greater than one are consid-

ered high variance descriptors because their standard devia-

tion is larger than the mean. Therefore, it is likely that many 

irrelevant database compounds populate these ranges, which 

severely restricts the predictive value of such descriptors. 

Consequently, they are also omitted.  

2.4. Classification and Virtual Screening 

 For JEP, different classification schemes have been in-
troduced in computer science [13,16]. Our procedure for 
molecular classification using ECP is outlined in Fig. (3). A 
set of ECP is computed from the training set and used to 
classify test compounds. When classifying a compound, we 
accumulate the support of all ECP from each class that are 
found in the test compound. The molecule is then predicted 
to belong to the class producing highest accumulated sup-
port. In our initial study, it became apparent that very small 

Fig. (3). Summary of ECP classification.  Test compound are classified on the basis of highest accumulated class support, as discussed in 

the text. 

Cl S

N N

N
O

O

O

F

N

NH2

N

H2N N

F

Classification by accumulated

support

Pi+1, Pn: 1/11 < 3/9

P1, Pi+1, Pn: 6/11 > 3/9



84    Medicinal Chemistry, 2008, Vol. 4, No. 1 Auer and Bajorath 

training sets containing only three, five, or 10 compounds 
per class were sufficient to achieve ECP prediction accura-
cies on different compound classes of, on average, 70%-80% 
[8].  

 In this study, we go beyond compound classification and 
apply ECP to virtual screening. This application presents 
additional challenges because small numbers of active mole-
cules must be distinguished from very large numbers of ir-
relevant database compounds. Therefore, we introduce an 
ECP-based compound ranking by calculating for each test 
compound the difference of accumulated support from ECP 
learning sets of active and inactive molecules and using it as 
a score.  

3. HTS DATA AND SCREENING CALCULATIONS  

For simulation of sequential screening trials, we used an 
HTS data set consisting of 50,000 test compounds produced 
in the search for novel inhibitors against the well-known 
enzyme and drug target dihydrofolate reductase (DHFR) 
[17]. Among the 50,000 compounds there were a total of 32 
confirmed competitive DHFR inhibitors with Ki values rang-
ing from 26 nM to 11 M [17,18]. This data set was made 
publicly available in the context of the first McMaster Uni-
versity data mining and docking competition as a training 
data set [19]. Fig (4) shows the 12 most active inhibitors that 
were identified in this screen. As can be seen, these com-
pounds had diverse structures. Compared to typical bench-
mark settings using constructed databases as decoys and op-
timized literature compounds as potential hits, the analysis of 
HTS data has two intrinsic advantages, although these data 
are generally prone to noise and experimental errors [11]: 
first, the HTS data sets contain confirmed inactive com-
pounds and, second, active compounds are typical screening 
hits, rather than leads added to constructed databases. Both 
aspects make simulations on HTS data more similar to prac-
tical screening applications involving VS calculations.  

 We simulated sequential screening experiments by per-
forming the following steps. Initially, ECP training was car-
ried out on sets of five randomly selected DHFR inhibitors 
and 20 inactive compounds taken from the HTS data. Com-
pounds were randomly selected computationally using a ran-
dom number generator. For each individual calculation, as 
described below, a training set was randomly selected. For 
discretization and feature selection, a previously reported set 
of 61 1D/2D descriptors with minimized descriptor correla-
tion was used as descriptor pool [20]. The set exclusively 
consisted of descriptors with pair-wise correlation coeffi-
cients of 0.8 or smaller and contained four topological indi-
ces, logP(o/w), 16 atom or bond counts, three partial charge 
descriptors, and 37 complex molecules surface property de-
scriptors approximated from 2D molecular representations. 
Thus, the selected descriptor set included 2D and implicit 3D 
molecular descriptors, but no structural or fragment-type 

descriptors.  

 The resulting ECP classifiers were then applied to rank 
all remaining compounds in the HTS data set. Following the 
sequential screening paradigm, we then selected the top-
scoring 10, 100, or 500 compounds from the HTS set and 
examined this selection set for new hits, thereby mimicking 

experimental evaluation of the top-ranked compounds. From 
each selection set, the top-ranked 10 compounds plus all 
remaining hits (for selection sets of 100 and 500 molecules) 
were then added to the training set in order to re-build and 
refine the classifier for the next iteration. For each selection 
set size (10, 100, or 500 molecules), 100 individual trials 
using different training sets were carried out in order to pro-
duce a statistically relevant sample. In each case, a total of 
nine sequential screening iterations were carried out such 
that the maximum number of “tested” compounds was 
smaller than 10% of the entire HTS data set for the largest 
selection set of 500 compounds. 

4. RESULTS AND DISCUSSION 

 Only five active molecules were used to derive ECP clas-
sifiers in the presence of varying numbers of inactive data-
base compounds. These were fewer active compounds than 
typically required for classification methods such as, for ex-
ample, decisions trees or Bayesian models, which we previ-
ously compared to ECP [8]. Since we randomly selected for 
each calculation five active database compounds for ECP 
training, the DHFR HTS set contained only a total of 27 hits. 
Thus, it provided an equally interesting and challenging sce-
nario for investigating whether ECP calculations were suffi-
ciently sensitive to select very small numbers of active mole-
cules from large numbers of inactive database compounds. 
For each selection set size, we carried out 100 calculations 
with different training sets in order to (a) determine the top 
performance and potential of the ECP methodology and (b) 
estimate the expected performance level in iterative screen-
ing independent of the composition of learning sets. This 
was done because compound classification calculations are 
generally much influenced by compound-class specific fea-
tures and training set composition [10,11]. For ECP, this 
analysis was particularly relevant since we only used five 
active compounds for training, which put high weight on the 
characteristics and contributions of each individual molecule. 

4.1. Pattern Distribution and Composition 

 First we analyzed the patterns that were derived from the 
learning sets as a basis for classification. On average, 29 to 
30 (of 61 available) descriptors were utilized in each ECP 
calculations, thus only about half the descriptor basis set. 
Therefore, large numbers of descriptors were not required for 
pattern derivation. For active learning set compounds, on 
average ~10,700 patterns consisting of 7.5 descriptor value 
pairs were produced. By contrast, for inactive compounds on 
average only ~170 patterns emerged with 3.3 descriptor 
value pairs per pattern. Thus, active compounds generated 
significantly more and larger patterns than inactive ones. 
These findings can be rationalized by considering that during 
learning each active compound must be distinguished from 
all inactive molecules and vice versa. Since there were con-
siderably more inactive than active compounds in each train-
ing set, active molecules required more descriptors to distin-
guish themselves from inactive compounds. Therefore, the 
large difference in the number of patterns between active and 
inactive molecules is due to the fact that the number of po-
tential patterns grows exponentially in descriptor spaces of 
increasing dimensionality. It follows that the deliberately 
unbalanced composition of our learning sets was reflected in 
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large differences in the numbers of “active” and “inactive” 
patterns, consistent with our expectations. For iterative 
screening applications, learning sets should contain more 
inactive than active compounds because many more inactive 
molecules are available.  

4.2. Individual ECP Trials 

 Next we analyzed the results of ECP calculations using 
compound selection sets of different size. Selection set size 
influenced the calculations because different numbers of 
active molecules were added to the training sets during each 

Fig. (4). Structures of the 12 most active DHFR inhibitors.  The comparison reveals the presence of different scaffold types among the 

HTS hits. 
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of the nine iterations. Selection sets of increasing size, from 
10 to 100 and 500 compounds, typically contained an in-
creasing number of hits that were added to the training set 
for the next iteration. The more active compounds are avail-
able, the better the basis for training becomes, but the trade-
off for improved training is the larger number of databases 
compounds that need to be “tested”. Tables (1, 2, and 3) re-
port the top ten ECP trials for selection sets of 10, 100, and 
500 compounds, respectively. The results reflect these trends. 

For selection sets of only 10 database compounds, the best 
individual trials recovered 33% of the hits (Table 1), which 
corresponded to nine of 27 available active compounds. The 
top ten trials showed the same retrieval characteristics be-
cause they identified the same sets of active compounds, 
despite different learning set composition (whereas other 
trials within the top 20 list produced different sets). During 
iterative screening, the number of cumulatively identified 
hits increased from three in the first trial to nine after the last. 

Table 1. Top 10 ECP Trials for Selection Sets of 10 Database Compounds 

Trial 
Iteration 

1 2 3 4 5 6 7 8 9 10 

1 TR 35 35 35 35 35 35 35 35 35 35 

 ACT 3 3 3 3 3 3 3 3 3 3 

 RR 11.1% 11.1% 11.1% 11.1% 11.1% 11.1% 11.1% 11.1% 11.1% 11.1% 

2 TR 45 45 45 45 45 45 45 45 45 45 

 ACT 5 5 5 5 5 5 5 5 5 5 

 RR 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 

3 TR 55 55 55 55 55 55 55 55 55 55 

 ACT 5 5 5 5 5 5 5 5 5 5 

 RR 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 18.5% 

4 TR 65 65 65 65 65 65 65 65 65 65 

 ACT 7 7 7 7 7 7 7 7 7 7 

 RR 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 

5 TR 75 75 75 75 75 75 75 75 75 75 

 ACT 7 7 7 7 7 7 7 7 7 7 

 RR 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 

6 TR 85 85 85 85 85 85 85 85 85 85 

 ACT 7 7 7 7 7 7 7 7 7 7 

 RR 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 

7 TR 95 95 95 95 95 95 95 95 95 95 

 ACT 8 8 8 8 8 8 8 8 8 8 

 RR 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 

8 TR 105 105 105 105 105 105 105 105 105 105 

 ACT 9 9 9 9 9 9 9 9 9 9 

 RR 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 

9 TR 115 115 115 115 115 115 115 115 115 115 

 ACT 9 9 9 9 9 9 9 9 9 9 

 RR 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 

“TR” reports the size of the training sets, “ACT” the total number of active compounds retrieved (with newly identified ones added to the training set for the next round), and “RR” 

the cumulative recovery rates of active compounds. The same abbreviations are used in Tables 2-4. 
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 For selection sets of 100 compounds (Table 2), the best 
cumulative recovery rate of individual trials was 52% corre-
sponding to 14 of 27 hits. Here retrieval characteristics sub-
stantially differed and in some instances, individual trials 
produced good results, although active compounds could not 
be recovered during the first one or two iterations. In these 
cases, the training sets were expanded by addition of 10 inac-
tive compounds per iteration, which then led to the identify-
cation of hits. This was due to the generation of patterns that 
became increasingly characteristic for active compounds 
because more inactive molecules needed to be discriminated. 

These findings further illustrated the usefulness of unbal-
anced training sets if only a few hits were available for learn-
ing and because inactive compounds contain information for 
ECP classification. Best recovery rates were obtained for 
selection sets of 500 compounds, as expected (Table 3). Here 
the top ten trials retrieved between 15 and 19 hits com-
pounds, producing a top recovery rate of 70%. Thus, at top 
performance levels, iterative ECP calculations were capable 
of producing significant retrieval rates for selection sets of 
varying size. 

Table 2. Top 10 ECP Trials for Selection Sets of 100 Database Compounds 

Trial 
Iteration 

 1 2 3 4 5 6 7 8 9 10 

1 TR 36 36 35 35 35 35 35 36 36 38 

 ACT 4 4 0 0 0 0 0 3 3 4 

 RR 14.8% 14.8% 0.0% 0.0% 0.0% 0.0% 0.0% 11.1% 11.1% 22.2% 

2 TR 49 48 45 45 45 45 45 47 46 49 

 ACT 8 7 0 0 0 0 0 10 4 7 

 RR 29.6% 25.9% 0.0% 0.0% 0.0% 0.0% 0.0% 37.0% 14.8% 25.9% 

3 TR 62 58 56 56 56 56 56 57 56 59 

 ACT 13 7 1 1 1 1 1 10 4 8 

 RR 48.1% 25.9% 3.7% 3.7% 3.7% 3.7% 3.7% 37.0% 14.8% 29.6% 

4 TR 72 70 68 68 68 68 68 68 66 69 

 ACT 13 11 4 4 4 4 4 11 4 8 

 RR 48.1% 40.7% 14.8% 14.8% 14.8% 14.8% 14.8% 40.7% 14.8% 29.6% 

5 TR 83 80 79 79 79 79 79 78 77 79 

 ACT 14 11 5 5 5 5 5 11 5 8 

 RR 51.9% 40.7% 18.5% 18.5% 18.5% 18.5% 18.5% 40.7% 18.5% 29.6% 

6 TR 93 90 91 91 91 91 91 88 88 90 

 ACT 14 11 8 8 8 8 8 11 7 9 

 RR 51.9% 40.7% 29.6% 29.6% 29.6% 29.6% 29.6% 40.7% 25.9% 33.3% 

7 TR 103 101 106 102 102 102 102 98 99 101 

 ACT 14 12 9 9 9 9 9 11 8 10 

 RR 51.9% 44.4% 33.3% 33.3% 33.3% 33.3% 33.3% 40.7% 29.6% 37.0% 

8 TR 113 111 117 113 113 113 113 108 111 112 

 ACT 14 12 10 10 10 10 10 11 11 11 

 RR 51.9% 44.4% 37.0% 37.0% 37.0% 37.3% 37.0% 40.7% 40.7% 40.7% 

9 TR 123 121 128 124 124 124 124 118 121 122 

 ACT 14 12 11 11 11 11 11 11 11 11 

 RR 51.9% 44.4% 40.7% 40.7% 40.7% 40.7% 40.7% 40.7% 40.7% 40.7% 
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4.3. Overall ECP Performance in Simulated Sequential 

Screening 

 Since we carried out 100 ECP trials with randomized 
learning sets for each selection set size, we could statistically 
estimate the performance level of iterative screening inde-
pendent of learning set composition (also taking learning sets 
into account that failed to recover active compounds or iden-
tified only a few). The results are reported in (Table 4). For 
selection sets of 10, 100, and 500 database compounds, aver-
age recovery rates of 19%, 26%, and 39% were observed, 
respectively. For the smallest selection set, this corresponded 

to the identification of approximately five hits when evaluat-
ing only 115 database compounds (~0.2% of the HTS set) 
and for the largest selection set, 10 to 11 hits based on the 
evaluation a total of 4525 compounds (~9%). The steady 
increase in average recovery rates over the nine iterations 
indicated that additional hits could be retrieved by adding 
more screening cycles. An attractive feature of iterative ECP 
calculations was the enrichment of hits among selection sets 
of only 10 compounds, where evaluation of 115 database 
compounds was sufficient to produce on average five hits, 
given initial learning sets containing only five active com-

Table 3. Top 10 ECP Trials for Selection Sets of 500 Database Compounds 

Trial 
Iteration 

 1 2 3 4 5 6 7 8 9 10 

1 TR 39 38 39 37 38 41 43 41 36 41 

 ACT 5 6 6 3 5 8 8 6 7 9 

 RR 18.5% 22.2% 22.2% 11.1% 18.5% 29.6% 29.6% 22.2% 25.9% 33.3% 

2 TR 52 48 51 51 51 53 55 55 47 53 

 ACT 9 6 9 10 8 10 10 11 9 11 

 RR 33.3% 22.2% 33.3% 37.0% 29.6% 37.0% 37.0% 40.7% 33.3% 40.7% 

3 TR 62 58 62 64 64 64 68 65 57 64 

 ACT 9 6 10 13 11 14 13 11 9 12 

 RR 33.3% 22.2% 37.0% 48.1% 40.7% 51.9% 48.1% 40.7% 33.3% 44.4% 

4 TR 75 69 72 74 78 75 78 76 68 74 

 ACT 12 7 10 13 15 15 13 12 10 13 

 RR 44.4% 25.9% 37.0% 48.1% 55.6% 55.6% 48.1% 44.4% 37.0% 48.1% 

5 TR 90 80 84 85 88 85 90 86 82 84 

 ACT 17 8 13 14 15 15 15 12 14 13 

 RR 63.0% 29.6% 48.1% 51.9% 55.6% 55.6% 55.6% 44.4% 51.9% 48.1% 

6 TR 101 93 96 96 99 95 100 98 93 94 

 ACT 18 11 15 15 16 15 15 14 15 13 

 RR 66.7% 40.7% 55.6% 55.6% 59.3% 55.6% 55.6% 51.9% 55.6% 48.1% 

7 TR 111 105 106 107 109 106 110 109 103 105 

 ACT 18 13 15 16 16 16 15 15 15 14 

 RR 66.7% 48.1% 55.6% 59.3% 59.3% 59.3% 55.6% 55.6% 55.6% 51.9% 

8 TR 121 117 117 117 119 116 120 119 113 115 

 ACT 18 16 16 16 16 16 15 15 15 14 

 RR 66.7% 59.3% 59.3% 59.3% 59.3% 59.3% 55.6% 55.6% 55.6% 51.9% 

9 TR 132 128 128 127 129 126 130 129 123 126 

 ACT 19 18 17 16 16 16 15 15 15 15 

 RR 70.4% 66.7% 63.0% 59.3% 59.3% 59.3% 55.6% 55.6% 55.6% 55.6% 
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pounds. On average, selecting 10 times more database com-
pounds gave two additional hits and testing 50 times more 
compounds doubled the number of recovered hits relative to 
the smallest selection sets. These results were well in accord 
with our previous findings that ECP was capable of success-
fully operating on the basis of very few active compounds 
and revealed an additional aspect, the presence of high sensi-
tivity and specificity of ECP calculations especially for small 
compound selection sets. This trend was further supported 
when we investigated the recovery of the subset of the 12 
most potent hits in the DHFR HTS set, as shown in Fig. (4). 
Our learning sets included on average only 1.5 of these ac-
tive compounds and the selections set of 10, 100, and 500 
compounds contained on average about four, five, and six of 
these hits, respectively. Thus, in small selection sets, the 
largest relative enrichment of potent hits was observed.  

 Taken together, our findings indicated that ECP produced 
recovery rates that were at least comparable to clustering or 
other classification methods used for sequential screening 
when approximately 10% of the screening data set was tested. 
However, ECP calculations already recovered approximately 
20% of available hits when only about 100 of 50,000 screen-
ing set compounds were evaluated, and these hits were among 
the most potent ones available in the HTS set. Therefore, the 
application of ECP is thought to further reduce compound 
selection set sizes in iterative screening trials, which adds to 
the sequential screening paradigm.  

5. PERSPECTIVE AND CONCLUSIONS 

 This study introduces ECP as a new methodology in 
simulated sequential screening and shows the potential of 
modern data mining techniques in pharmaceutical research. 
Although this screening paradigm is currently far from being 
established in pharmaceutical research, it is increasingly 
considered as a complement or an alternative to brute force 
HTS [10-12]. In simulated sequential screening trials, ECP 
calculations generated a steady increase in the recovery of 

active compounds and already produced multiple hits by 
iteratively selecting as little as 0.2 % of the HTS data set. 
Clearly, with 50,000 compounds the DHFR test set studied 
here was smaller than many currently used HTS compound 
sets that are frequently an order of magnitude larger in size. 
However, the size of screening sets is not a limiting factor 
for ECP analysis and given the observed sensitivity and 
specificity of the calculations, there are no reasons to expect 
that substantially different results would be obtained for dif-
ferently sized screening sets (but results differ for differently 
sized training sets). ECP calculations are particularly attrac-
tive for sequential screening applications when complete 
recovery of available active compounds is not the primary 
goal of the screening efforts, but rather rapid recovery of 
novel hits. Our results further support the view that iterative 
computational and experimental screening can streamline 
biological screening efforts and greatly reduce the experi-
mental and data analysis requirements, including secondary 
assays to eliminate false-positives. If a practical ECP-sup-
ported sequential screening application on the DHFR set 
would have produced results similar to our simulations, it 
would have been possible to replace HTS analysis of this 
data set with series of low-throughput assays to identify mul-
tiple hits. On the basis of our findings, we conclude that ECP 
analysis should merit further consideration in HTS data min-
ing and sequential screening.  
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